If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7k2 + -6k + 6 = 0 Reorder the terms: 6 + -6k + 7k2 = 0 Solving 6 + -6k + 7k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.8571428571 + -0.8571428571k + k2 = 0 Move the constant term to the right: Add '-0.8571428571' to each side of the equation. 0.8571428571 + -0.8571428571k + -0.8571428571 + k2 = 0 + -0.8571428571 Reorder the terms: 0.8571428571 + -0.8571428571 + -0.8571428571k + k2 = 0 + -0.8571428571 Combine like terms: 0.8571428571 + -0.8571428571 = 0.0000000000 0.0000000000 + -0.8571428571k + k2 = 0 + -0.8571428571 -0.8571428571k + k2 = 0 + -0.8571428571 Combine like terms: 0 + -0.8571428571 = -0.8571428571 -0.8571428571k + k2 = -0.8571428571 The k term is -0.8571428571k. Take half its coefficient (-0.4285714286). Square it (0.1836734694) and add it to both sides. Add '0.1836734694' to each side of the equation. -0.8571428571k + 0.1836734694 + k2 = -0.8571428571 + 0.1836734694 Reorder the terms: 0.1836734694 + -0.8571428571k + k2 = -0.8571428571 + 0.1836734694 Combine like terms: -0.8571428571 + 0.1836734694 = -0.6734693877 0.1836734694 + -0.8571428571k + k2 = -0.6734693877 Factor a perfect square on the left side: (k + -0.4285714286)(k + -0.4285714286) = -0.6734693877 Can't calculate square root of the right side. The solution to this equation could not be determined.
| (6x^2+2x-9)/2x | | 3x-1ox=90 | | 3k+2k=12+k+k | | 1/2*9/1*5/1 | | 150+x/5=350 | | 6(8x-12)=-312 | | K-6-4k=15 | | (x-12)(x-4)= | | 5x-2x=7 | | p/8=-3/4 | | t^2-42t-80=0 | | 3x^2-9x-5=0 | | -3/5v-1/3=5v-6/5 | | x-9y=17 | | 150+x/5.00=290 | | (5x+6)(3x^2+9x+4)= | | 4x-2x+3=2x+2x-1x | | (w-3)/(w^2-9) | | -2v+5/4=-2/3v-7/4 | | 4/5x+7 | | 150+250.00/5 | | x+5y^2-20y+19=0 | | p+8=6 | | 8x=x+15 | | 150+x/5=250.00 | | 5/3x-4/3-1=8 | | 3x+2=9y-4 | | x-(-4)=5 | | 1/4x-7/3=-4/3x-6 | | 2(x+2)=3x+(-15) | | 7y+4(y-5)=3(y+2)-3 | | y=x^2+9x+117 |